Spectral graph theory and the inverse eigenvalue problem of a graph

نویسنده

  • LESLIE HOGBEN
چکیده

Spectral Graph Theory is the study of the spectra of certain matrices defined from a given graph, including the adjacency matrix, the Laplacian matrix and other related matrices. Graph spectra have been studied extensively for more than fifty years. In the last fifteen years, interest has developed in the study of generalized Laplacian matrices of a graph, that is, real symmetric matrices with negative off-diagonal entries in the positions described by the edges of the graph (and zero in all other off-diagonal positions). The set of all real symmetric matrices having nonzero off-diagonal entries exactly where the graph G has edges is denoted S(G). Given a graph G, the problem of characterizing the possible spectra of B, such that B ∈ S(G), has been referred to as the Inverse Eigenvalue Problem of a Graph. In the last fifteen years a number of papers on this problem have appeared, primarily concerning trees. The adjacency matrix and Laplacian matrix of G and their normalized forms are all in S(G). Recent work on generalized Laplacians and Colin de Verdière matrices is bringing the two areas closer together. This paper surveys results in Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph, examines the connections between these problems, and presents some new results on construction of a matrix of minimum rank for given graph having a special form such as a 0,1-matrix or a generalized Laplacian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph∗

Spectral Graph Theory is the study of the spectra of certain matrices defined from a given graph, including the adjacency matrix, the Laplacian matrix and other related matrices. Graph spectra have been studied extensively for more than fifty years. In the last fifteen years, interest has developed in the study of generalized Laplacian matrices of a graph, that is, real symmetric matrices with ...

متن کامل

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

Solving a nurse rostering problem considering nurses preferences by graph theory approach

Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...

متن کامل

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004